Some new or interesting sequestrate Basidiomycota from African woodlands

MICHAEL A. CASTELLANO, ANNEMIEKE VERBEKEN, RUBEN WALLEYN and DANIEL THOEN

Five new or interesting sequestrate Basidiomycotina from the Zambezian miombo woodlands of central Africa are described or reported: Aroramyces Castellano & Verbeken gen. nov., Aroramyces radiatus (Lloyd) Castellano, Verbeken & Walleyn comb. nov., Corditubera bovonei, Mackintoshia persica, Mycoamaranthus congolensis (Dissing & Lange) Castellano & Walleyn comb. nov., and Octaviania ivoryana Castellano, Verbeken & Thoen sp. nov. In addition, Aroramyces gelatinosporus (Cribb) Castellano comb. nov., from tropical North Queensland, Australia, is presented.

Keywords: ectomycorrhizal hypogeous fungi, miombo woodland, taxonomy, tropical Africa

Michael Castellano, United States Department of Agriculture, Forest Service, Pacific Northwest Research Station, Forestry Sciences Laboratory, Corvallis, Oregon 97331, U.S.A.

Annemieke Verbeken and Ruben Walleyn, Vakgroep Biologie, Lab. Plantkunde, K.L. Ledeganckstraat 35, B–9000 Gent, Belgium

Daniel Thoen, Fondation Universitaire Luxembourgoise, Av. De Longwy 185, B-6700 Arlon, Belgium

Introduction

Few sequestrate Basidiomycotina have been reported from Africa south of the Sahara. Most reports concern descriptions of new taxa based on a single collection. Castellano and Trappe (1990) list 21 species and varieties from various countries in sub-Saharan Africa. Sequestrate fungi are more difficult to discover than classical mushrooms, for their habit is to fruit beneath litter, duff or the soil surface. The relative paucity of collecting of sequestrate fungi on the African continent makes it likely that many more species remain undiscovered.

Many sequestrate fungi belong to fungal families within which a majority of the species are thought to form ectomycorrhiza with host plants. Africa traditionally was thought to be low in diversity of ectomycorrhizal host plants. Meanwhile, through 1992, 51 African plant species in 19 genera have been confirmed as forming ectomycorrhiza (Thoen, 1993). These species belong to the plant families Leguminosae (Caesalpinioideae and Papilionoideae), Euphorbiaceae, Dipterocarpaceae, and Proteaceae. Large vegetation zones, such as the Zambezian and Sudanian woodlands, and parts of the Guineo-Congolian rainforest, are dominated by these ectomycorrhizal trees.

During a collecting trip in drier Zambezian miombo woodland in Zimbabwe, Walleyn and Verbeken found several sequestrate fungi, which
appeared not uncommon, especially under *Brachystegia spiciformis* Benth. These collections are studied here together with a few isolated collections from African woodland, sent over the last 15 years to the senior author for identification.

As we honor the contributions of Marja Härkönen, who published several papers on the mushroom flora of Tanzania, it is timely to present a number of species of tropical African sequestrate fungi that we feel can be confidently placed in the mycological scheme of things.

Materials and methods

Methods of collection and macroscopic and microscopic study were generally those of Castellano et al. (1989). Herbarium names are abbreviated according to Holmgren et al. (1990). Colors of fresh specimens are in general terms. Hand-cut sections of both fresh and dried material were mounted in 5% KOH or Melzer’s reagent for standard light microscopy. Spore dimensions are based on the measurement of 30 randomly selected spores mounted in KOH; spore lengths include sterigma attachment. Measurements of sterile tissues (e.g., peridium) and spores are from mature sporocarps. Names of vegetation types follow White (1983).

Taxonomic treatment

Aroramycetes Castellano & Verbeken, gen. nov.

Aroramycetes radiatus (Lloyd) Castellano, Verbeken & Walley, comb. nov. – Figs. 1, 5, 9

= *Gymnoglossum radiatum* (Lloyd) Bottomley, Bothalia 4: 499. 1948.

Basidiomata up to 2.5 (−3.3) cm in diam, subglose to irregular, when fresh white to yellow-brown motting, red-brown where handled, surface tomentose, numerous soil particles adhering to all sides, Guaiac immediately blue, FeSO$_4$ slowly pale blue-green, KOH slightly red around margin of droplet. *Gleba* slightly yellow-brown to red-brown to salmon; locules irregular, empty to partially filled. *Rhizomorphs* single or numerous, stout, up to 1.0 mm in diam, concolorous with peridium. Columella distinct, gelatinous, opaque, truncate, branched from near center of sporocarp. *Odor* sometimes strong, raphanoid or sweet. *Taste* mild.

Peridium three-layered, up to 400 μm thick, epicutis 100–150 μm thick, of thin-walled, hyaline, loosely interwoven hyphae 5–7.5 μm in diam, up to about 40 μm in length, hyaline crystalline particles abundant on hyphae near surface, clamp connections present; mesocutis variable in thickness, of hyaline, thin-walled, loosely interwoven hyphae with clavate end cells 7.5–10 μm in diam, end cells 13–27 μm in diam, clamp connections absent; subcutis 60–75 mm thick, of hyaline, thin-walled, compactly interwoven hyphae 2–3 μm in diam with some intergrading clavate cells from adjoining layer.

Trama of hyaline to slightly refractive, densely compacted, unorganized hyphae up to 7.5 μm in diam in a gelatinized matrix, clamp connections present on interwoven hyphae. *Trama* of hyaline to slightly refractive, densely compacted, unorganized hyphae in a gelatinized matrix, clamp connections absent. *Basidia* hyaline, thin-walled, 2–4-spored. *Spores* ornamented with spines embedded within a nearly uniformly inflated utricle, symmetrical, utricle distinct, saccate, inflated, attached only at base, in KOH some shade of brown singly, nondextrinoid, amyloid. *Etymology*: named for David Arora of Santa Cruz, California, accomplished mycologist and collector of numerous fungi in the miombo woodlands of central Africa.
absent. *Basidia* soon collapsed, hyaline, thin-walled, squat cylindrical to clavate 10 × 22 μm, (2--) 4-spored.

Sporae ornamented with spines embedded within a nearly uniformly inflated utricle, 10–12 (−13.5) × 6–7 (−8) μm, (mean =10.8 × 6.85, l/w = 1.58), broadly ellipsoid, symmetrical, base appears truncate owing to how the utricle is attached at the base of the spore, walls 1–1.5 μm thick, utricle distinct, saccate, inflated up to 1 μm, giving the spore a more or less square appearance, attached only at base, in KOH pale brown singly, golden brown in mass, nonexodrinoid, inamylloid.

Habit, habitat and season: Single to gregarious; hypogeous to emergent on litter-rich termite mounds or on doleritic red clay soils in miombo woodland under *Brachystegia spiciformis* or *Uapaca* sp.; February and March.

Iconography: Lloyd (1925, pl. 298, figs. 2908–2909).

Discussion: Lloyd (1925) described this species in *Hymenogaster* Vittad., but at the same time provisionally introduced the generic name *Radiogaster* stating “This should be held as a genus (Radiogaster McG.) for it departs from *Hymenogaster* in several particulars. There are no gleba cells visible to the naked eye, no sterile base, in fact no ‘base’ at all for on splitting a specimen the gleba appears to radiate from the center. The spores closely resemble those shown by Tulasne for *Hymenogaster lycoperdineus* and mostly have toothed remains of the stergmata giving the truncate effect of *Ganoderma* spores”. Lloyd erred in thinking the gleba radiated from the center. He had the misfortune of “splitting” the specimen exactly across its axis instead of in cross-section. *Aroramyces radiatus* has a distinct columella which if cut through incorrectly would give the impression of a radiating glebal structure. Placement in *Dendrogaster* Buchholz and *Gymnoglossum* Massee by Dodge and Zeller (1934), and Bottomley (1948), respectively, is incorrect. The type of *Dendrogaster*, *D. connectens* Buchholz has been shown by Fogel (1985) to be an immature *Hymenogaster* and possesses an apical beak characteristic of *Hymenogaster*. According to Smith (1966) *Gymnoglossum* has fusoid, smooth, thick-walled spores that have an apical pore. We propose the new genus *Aroramyces* based on the unique combination of spore characters and gelatinized gleba. *Aroramyces* has affinities to the Cortinariaceae based on spore pigmentation and ornamentation. The gelatinized gleba and distinctly inflated utricle instantly separates it from all known genera of sequestrate Cortinariaceae. In this genus we include another similar species, known from Queensland, with larger spores and a single-layered peridium:

It is interesting to point out that this genus is only known from subtropical or tropical habitats in Zimbabwe and Queensland, Australia. The collections of *A. gelatinosporus* from Queensland are all from under various *Eucalyptus* (Myrtaceae) species, the collections from Zimbabwe are from under *Brachystegia* (Caesalpinioideae) and *Uapaca* (Euphorbiaceae).

Basidiomata subglobose to globose, mottled yellow to yellow-brown with scattered off-white areas when fresh, distinctly rugulose, mottled pale gray and pale brown when dried. *Gleba* solid, nearly black with white to off-white veins. *Rhizomorphs* scattered, thin, yellow-brown. *Col umella* absent. Taste not determined. *Odor* not determined.

Peridium two-layered, up to 1330 μm thick; epiicus up to 760 μm thick, of compact textura epidermoidea, slightly pale yellow-brown, thin-walled hyphae up to 8 μm thick; subcutis up to 570 μm thick, of compact textura epidermoidea, hyaline, thin-walled hyphae up to 15 μm thick; clamp connections absent from both layers.
Fig. 1. *Aroramyces radiatus* (A. Verbeken 99–103). (Photo: R. Walleyn).

Fig. 2. *Mycoamaranthus congolensis* (A. Verbeken 99–105). (Photo: R. Walleyn).
Fig. 3. *Mackintoshia persica* (A. Verbeken 99-169). (Photo: R. Walleyn).

Fig. 4. *Octaviania ivoryana*, holotype in situ. (Photo: R. Walleyn).
Trama of hyaline, compact textura epidermoidea, hyphae up to 5 μm thick; clamp connections absent. Hymenium not seen. Basidia not seen but remnant hyaline, sterigmal attachments can be observed. Cystidia absent.

Spores ornamented with spines or punctations, 9–11 (–13) μm, including ornamentation subglobose to globose, sometimes variously angled or flattened, symmetrical, ornamented uniformly with minute spines or a minute punctation, walls 1–2 μm thick except at point of attachment where the spore wall is thin, in KOH pale yellow-brown singly, yellow-brown in mass.

Habit, habitat and season: subhypogeous to emergent through leaves in miombo woodland under Brachystegia spiciformis; February.

Collections examined: Zimbabwe, Manicaland Prov., Chipinge, Busi Farm, around Scott’s house, 12.II.1999 A. Verbeken 99–169 (OSC, GENT).

Iconography and figs.: Mattirolo (1922, pl. 2), Dissing & Lange (1962, fig. 60D; 1964, pl. 42, fig. 11), Demoulin & Dring (1975: figs. 3ab).

Discussion: We did not examine the type but our specimens agree with the description of the type by Dissing and Lange (1962). The minute ornamentation of the spores lead Mattirolo (1922) to originally describe them as smooth. Corditubera kivuensis Demoulin and Dring differs by its smaller spores and more distinct ornamentation.

Mackintoshia persica Pacioni & Sharp, Mycotaxon 75: 226. 2000. – Figs. 3, 7, 10

Collections examined: Zimbabwe, Manicaland Prov., along Mutare–Bvumba road, near Prins Charles Viewpoint, 11.II.1999 A. Verbeken 99–169 (GENT, OSC); Manicaland Prov., Chipinge, Busi Farm, forest around Scott’s house, 13.II.1999 A. Verbeken 99–210 (GENT, OSC).

The collections cited represent additional localities of this species that very recently has been described by Pacioni and Sharp (2000). For a full description on this fungus we refer to this publication.

Mycoamaranthus congolensis (Dissing & Lange) Castellano & Walley, comb. nov. – Figs. 2, 8, 11

Basidiomata up to 40 mm wide and 30 mm tall, irregular, subglobose to globose to somewhat wrinkled and knobby, vivid yellow when fresh and remaining so at base but becoming slightly brown or olive over upper portion with age, when fresh peridium thin, membranous, arachnoid in places, easily separable from gleba, surface slightly tomentose, dry, somewhat powdery. Gleba firm, spongy-rubbery, pink in youth, becoming yellow-red, salmon to gray-red or dull red when mature; locules minute, irregularly shaped. Rhizomorphs scanty, emergent from base, concolorous with peridium. Columella extending up from sterile base, concolorous with peridium. Taste acrid and mealy. Odor indistinct or unpleasant, of plastic.

Peridium with yellow pigment immediately leached from peridial tissue when mounted in KOH, leaching of pigment not evident in H₂O or Melzer’s reagent, single layered, up to 600 μm thick, of pale yellow to brown-yellow, thin-walled hyphae 5–8 μm in diam in a textura epidermoidea, subpericlinal near gleba (within 100–200 μm), more loosely interwoven near peridial surface, with some encrustations on the hyphae near the surface; clamp connections absent.

Trama of hyaline, loosely interwoven, multibranched, thin-walled hyphae, 4–5 μm in diam, in a gelatinized matrix; clamp connections absent. Hymenium a single palisade of basidia. Basidia clavate to broadly clavate, hyaline, 24–28 × (12–) 13–15 μm at the apex, 4-spored; sterigmata 5–7 (–8) μm long, 2 μm wide at base, tapered; clamp connections absent. Cystidia absent, although in one collection (99–105) some unusual elements were observed emerging from the hymenium, they were narrowly cylindrical, hyaline, 23–38 × 4–5 μm.

Spores ornamented, (11–) 12–15 × 8–10 μm (mean = 12.9 × 8.7 μm, l/w = 1.49) excluding ornamentation but including pedicel, ellipsoid to broadly ovoid, symmetrical, ornamented uniformly with minute spines, approximately 0.5 μm tall, walls 1–1.5 (–2) μm thick, sterigmatal attachment distinct, hyaline, 2 μm long × 1 μm wide, spines and walls dextrinoid in youth, nondextrinoid at maturity, in KOH hyaline singly, pale yellow-brown in mass.

Habit, habitat and season: Single to gregarious; subhypogeous to emergent through leaves on doleritic red clay soils in miombo woodland under Brachystegia spiciformis, Julbernardia...
M. auriorbis Thoen, sp. nov. - Figs. 4, 6, 12

Yellow peridium and unique spore ornamentation are both features but differs from **Octaviania** Hymenogaster of the spores and basidia, both being larger in size in Thailand cited by Castellano et al. (1992) as species from under Dipterocarpaceae. **Trappe & Malajczuk** is characterized by a vivid yellowish-green, sometimes developing blue to blue-green stains when cut; locules irregularly shaped, filled. **Rhizomorphs** single to numerous, fine to about 1 mm wide, attached at sporocarp base, white. **Columella** present or absent, when present white. Taste not distinctive. Odor sweet, pleasant, slightly apple-like.

Peridium two-layered, up to 700 µm thick, epicutis up to 500 µm thick, of hyaline to pale gray, thin-walled, gelatinized, compactly interwoven hyphae, 3–4 µm in diam, with many erect hyphal tips forming a turf at the surface, clamp connections absent; subcutis up to 200 µm thick, of hyaline, thin-walled, non-gelatinized, tightly interwoven hyphae 5–8 µm in diam.

Trama 20–50 µm thick, of hyaline, divergent, slightly gelatinous, thin-walled hyphae, 2–4 µm in diam, clamp connections absent. Basidia soon collapsed, clavate, 13–20 × 11–12 µm, (2–) 4-spored; stigmatic 2–5 µm tall, 1–2 µm wide at base.

Octaviania ivoryana Castellano, Verbeken & Thoen, sp. nov. – Figs. 4, 6, 12

Basidiomata usque ad 50 mm diam., subglobose, globosa, reniformia vel pyriformia, ex glauco alba cum maculis griseis vel cremeis; superficies ceracea vel levet pruinosa; gustu indistincto; odore poni similis. Gleba firma, alba vel rubroflavida, viridiflava, cum maculis glaucus, loculis irregularibus. Columella interdum presens, alba. Peridium bistratis, 700 µm crassum; epicutis usque ad 500 µm crassa, ex hyphis hyalinis, gelatinosis, compacte intermixtis, infibulatis, superficiem versus palisadiformis; subcutis usque ad 200 µm crassa, ex hyphis hyalinis, non gelatinosis, compacte intermixtis. Basidia clavata, 13–20 × 11–12 µm, tetraspora, interdum bispora. Sporae hyalinae ad pallide olivaceae in cumulo, 9–12(15) × (7)8–10(12) µm, late ellipsoideae ad subglobosae, spinis densis, acutis vel reflexis, in conis usque ad 2 µm alitis coalescentibus ornatae.

Typus: Zimbabwe, Mashonaland East Prov., Bromley, Liemba Farm, 3.II.1999 A. Verbeken 99–104 (holotype GENT, isotype OSC).

Mycoamaranthus was originally described from northern Queensland, Australia (Castellano et al. 1992). The type **M. auriorbis** Castellano, Trappe & Malajczuk is characterized by a vivid yellowish-green and unique spore ornamentation. **Mycoamaranthus congo lensis** possesses both features but differs from **M. auriorbis** in size of the spores and basidia, both being larger in **M. congo lensis** than in **M. auriorbis**. The collection from Thailand cited by Castellano et al. (1992) as **M. auriorbis** is a third, as yet, undescribed species from under Dipterocarpaceae.

Iconography and figs.: Dissing and Lange (1962, fig. 39; 1963, pl. 39, fig. 1).

Local uses: Eaten, first boiled and the dried, by local people in Eastern Burundi who call it ‘ugutwikwinkende’ (Nzigidahera 1994). In Malawi the people of the Yaowo tribe eat it and their name for it is “haira” (D. Arora, pers. comm.).

Discussion: The type collection is listed from Congo in Haut-Katanga District, in vicinity of “Elizabethville” (Lubumbashi) in December. Illustrations of basidia, spores and stigmata fit perfectly, except spore width was reported by Dissing and Lange (1962) as 9.4–12 µm. **Dendrogaster** was first described by Buchholz (1901) and reduced to synonymy under *Gymnoglossum* by Cunningham (1944). Smith (1966) disagreed with Cunningham and placed it in *Hymenogaster* as a subgenus. After study of the type (*D. connectens* Buchholz) Fogel (1985) agreed with Smith (1966) that *D. connectens* was indeed a *Hymenogaster* species aligned with other *Hymenogaster* species that possess an apical beak on the spore and some degree of columella development.

Mycoamaranthus was originally described from northern Queensland, Australia (Castellano et al. 1992). The type **M. auriorbis** Castellano, Trappe & Malajczuk is characterized by a vivid yellow peridium and unique spore ornamentation. **Mycoamaranthus congo lensis** possesses both features but differs from **M. auriorbis** in size of the spores and basidia, both being larger in **M. congo lensis** than in **M. auriorbis**. The collection from Thailand cited by Castellano et al. (1992) as **M. auriorbis** is a third, as yet, undescribed species from under Dipterocarpaceae.
Spores ornamented, 9–12 (15) × (7)–8–10 (–12) μm, (mean = 10.5 × 9.1 μm, l/w = 1.17), broadly ellipsoid to subglobose, ornamented with crowded, pointy to reflexed spines coalesced into cones, 1–2 μm tall, ornamentation radiates somewhat from point of attachment, symmetrical, thick-walled more or less 1 μm thick, in KOH hyaline to pale yellow-green singly, hyaline to pale olive in mass, dextrinoid, inamyloid.

Etymology: “ivoryana,” named in honor of Michael H. Ivory, of the Oxford Forestry Institute, accomplished collector of sequestrate fungi in far-flung regions of the world.

Habit, habitat and season: Single to gregarious; subhypogeous to emergent through leaves on doleritic red clay soils in miombo woodland or on termite mounds under *Afzelia africana* Smith ex Pers., *A. quanzensis* Welw., *Anthonotha crassifolia* (Baill.). Léonard, *Brachystegia spiciformis*, or *Uapaca* sp.; July through September (Sudanian woodland) and January, February (Zambezian miombo woodland).

Iconography: Thoen and Ducousoo (1989, fig. 9e).

Discussion: The genus *Octaviania* Vittad. is characterized by dextrinoid spores ornamented with distinct cones of coalesced spines. We have not studied material of *Octaviania africana* Lloyd but its larger spores, as published in the description by Bottomley (1948), Lloyd (1922) and Verwoerd (1925), separate it from *Octaviania ivoryana*.

The specimens *D. Thoen* 7660, 7701, 7861 and 7958 were cited as *Sclerogaster* sp. by Thoen and Ba (1989) and Thoen and Ducousoo (1989).

It should be noted that the Nomenclatural Committee for Fungi recently pointed out that *Octavianina* is a later orthographic variant of *Octaviania*, not to be used (Gams 1999).

Acknowledgements: The National Fund for Scientific Research – Flanders (F.W.O., Belgium) granted the collecting trip of A. Verbeke in Zimbabwe. Mieke and Ruben wish to thank the families Sharp, Carter and Scott for their kind hospitality during their stay in "Zim". The S.E.M. photographs were made by Marcel Verhaegen at the National Botanic Garden of Belgium (BR). Pacioni and Sharp are thanked for communicating their paper on *Mackintoshia*. Thom Kuyper (The Netherlands) kindly solved the nomenclatural discussion on *Radiogaster*.

References

