**Physisporinus rivulosus, an interesting polypore species**

**HEIKKI KOTIRANTA**


The polypore *Physisporinus rivulosus* (Berk. & Curt.) Ryv. is reported as new to Finland. It is better known as *Porl alibipellucida* Baxter and widely distributed in North America. The Finnish specimen is from *Pinus sylvestris* L. Though *P. rivulosus* is the only known species of *Physisporinus* Karst. with clamp connections, it otherwise fits well with that genus. The macroscopic and microscopic characteristics of *P. rivulosus* are described and illustrated, and the taxonomy is briefly discussed.

Heikki Kotironta, Department of Botany, University of Helsinki, Unioninkatu 44, SF-00170 Helsinki, Finland

---

**Introduction**

*Physisporinus rivulosus* is widely distributed in North and Central America (Lowe 1966), but records from other parts of the world are few. In external appearance it greatly resembles *Skeletocutis subincarnata* (Peck) Keller and was provisionally determined as that species in the field. However, microscopically it proved to be a monomitic, clamped species with subglobose spores and without the rose-thorn-shaped crystals characteristic of the genus *Skeletocutis* Kotl. & Pouz. (Keller 1979, David 1982, Kotiranta 1984).

Jülich (1984), Ryvarden (1976, 1978) and Ryvarden & Johansen (1980) do not mention any taxon with this combination of characters, but Lowe’s (1966) drawings and description of *Porl rivulosa* (Berk. & Curt.) Cooke showed many similarities to my specimen, and David’s (1972) paper finally confirmed the identity of the species.


Fruit body annual, resupinate, 13 × 5 cm, composed of small roundish pieces which grow together, pure white when fresh, light cream or ochre with a few dark brown flecks when dry, in part contracting, sterile margin narrow (less than 1 mm), white also in dry condition. Subiculum resinous, hard, tubes brittle when dry.

Pores roundish to angular, thin-walled, 4—6 (—7) per mm. Tubes up to 1.3 mm long, subiculum up to 0.2 mm thick, in part almost lacking.

Hyphal system monomitic. Subicular hyphae parallel to each other and to the substrate, near pore bottom tightly intertwined, branched, clamped, 2—5 μm wide, fairly thick-walled. In sterile margin 2—3.5 μm wide, thin-walled, very often simple-septate and with crystals. Contents mainly staining CB+ (for the reactions see Niemelä 1985). Young subiculum with big crystalline clusters. Tramal hyphae 1.5—2.5 (—3) μm wide, richly branched, intertwined, not very thin-walled. On some hyphae in upper tube almost invisible resinous ‘fur’. This resinous matter (in type, S) gives the old tubes a hard consistency and brown colour. In dissepiment edge the hyphae more parallel, slightly wider (3 μm), thin-walled, with or without crystals. Subicular and tramal hyphae CRB lilac. Hymenium composed of clavate, sometimes slightly constricted basidium (15—24 × 6—7 μm) with four thin stigermata (3—4 μm long) and of very numerous bottle-shaped, thin-walled cystidioles (14—25 × 3.5—6 μm) with narrow apical tips. Both basidia and cystidioles basally clamped and filled with clearly visible, variable, refractive droplets. The contents of basidia and cystidioles CB+. Spores subglobose, hyaline, (4—) 4.5—5 (—5.1) × (3.5—) 3.8—4 (—4.8) μm, with one prominent droplet, thin-walled, IKI—, CB— (contents blue).

Specimens examined


Finland. Pohjois-Häme: Saarijärvi, Pyhä-Häkki National Park, corticated, strongly decayed *Pinus sylvestris* on ground in dry pine— *Calluna vulgaris* heath, Grid 27° E 697:42;
Fig. 1. Physisporinus rivulosus. a) section through fruit body, b) subiculum, c) tube bottom, d) upper tube, e) young dissepiment edge, f) young subiculum with crystals, g) sterile margin, h) spores, i) basidia, j) cystidioles (Kotiranta 5420).


[Addendum: Finland. Uusimaa: Helsinki, Vanhakaupunki, Annala, on thick, decorticated, strongly decayed trunk of Pinus sylvestris beside a camp fire place, Grid 27° E 6679.387, 11.IX.1985 Saarenoksa 39585, 6.X.1985 Saarenoksa 51485 (H, Hb. Kotiranta, Hb. Niemelä). — This is the second find of P. rivulosus in Finland. It was collected after this paper already was in press and is therefore not treated in detail. It is macroscopically as well as microscopically very similar to my specimen. However, there are some differences in the abundance of clamps. The clamps are few, especially in the trama, and the hyphae are mostly simple-septate, thus resembling those seen in other species of Physisporinus. I am grateful to Mr Reima Saarenoksa, who gave these new collections at my disposal.]

Distribution and ecology
P. rivulosus is already known from Cuba (Berkeley & Curtis 1868), Canada (Buckland 1946), the United States (Baxter 1938, Cooke 1942, Lowe 1966) and France (David 1972). The first record in Fennoscandia is from Central Finland, northern Lake District (see Niemelä 1982). Finland lies almost wholly in the Boreal zone (Hämet-Ahti 1981) and the new locality in the Pyhä-Häkki National Park is situated in the transitional
area between the Southern and Middle boreal subzones (for these subzones see the map in Niemelä 1982). The forests in this area are composed of spruce, pine, birch and aspen trees. The Pyhä-Häkkä National Park is mainly in a virgin state and Picea abies is dominant, being the climax tree. In dry sites, however, Pinus sylvestris is dominant.

The Finnish specimen of Physisporinus rivulosus was collected on corticated, strongly decayed, fallen Pinus sylvestris; no other polypore species were noted on the same trunk. The locality is dry Calluna vulgaris – Pinus sylvestris woodland. The other European collections, made in France, are also from pine (David 1972), Baxter (1938), Cooke (1942), Kimmey and Lightle (1955) and Kimmey (1958) report several additional hosts from North America (Tsuga heterophylla, Thuja plicata, Pseudotsuga menziesii, Sequoia sempervirens, Alnus oregana).

The rot in the Finnish material is more or less fibrous, light brown, and seems to be a white-rot. The white mycelial flecks between the laminae of decayed wood mentioned by Buckland (1946) and Kimmey and Lightle (1955) are clearly seen in the Finnish collection. According to Buckland (1946), P. rivulosus causes white ring rot (white-rot; Nobles 1948) and is one of the main heart-rotting fungi of living western red cedars in British Columbia and also a very significant decomposer of redwood in the western United States (Kimmey & Lightle 1955, Kimmey 1958).

Four of the North American collections examined by me are from charred wood, and two of these are mixed samples (Baxter 28.XI.1937 and Smith 56250). In both cases the other polypore species is Oligoporus sericeomollis (Rom.) Pouz., in Finland found mostly on charred pine stumps.

There is also one collection from Alaska: Wrangell, which was collected on 9 September 1935 and determined by D.V. Baxter as Poria albipellucida (= Physisporinus rivulosus). This collection is provided with Baxter’s notes: ‘Snow white when fresh’ and ‘Badly eaten by worms and so not typical’. The specimen is in fact eaten by nematodes, but in my opinion it does not represent P. rivulosus. It is much softer, the border is rhizomorphic and the hyphae are wider and thicker-walled than in P. rivulosus. The hymenium has been eaten and is also infected by moulds, so that I could not find any basidiospores.

Discussion
The systematic position of P. rivulosus has long been unclear. David’s (1972) proposed inclusion of P. rivulosus in Rigidoporus has not generally been accepted (and is nomenclaturally invalid) and Mme A. David (in litt.) herself was not entirely satisfied with the decision.
Jülich (1984) re-established the genus Physisporinus Karst., which had long been neglected and regarded as synonymous with Rigidoporus. The type species of Physisporinus is Poria vitrea Pers.: Fr., which is annual, resupinate, soft when fresh, contracting in dry condition, has cystidioles, crystals on the hyphae and subglobose spores. These characters all belong to P. rivulosus as well, and the present species also closely agrees with the other Physisporinus species in its general appearance.

It seems that Physisporinus should be regarded as a genus which includes both species with simple septa and species with clamp connections. In this broader sense the genus is characterized by species with annual fruit bodies, a monomitic hyphal system, cystidioles, simple-septate or clamped hyphae and subglobose spores. This solution would separate Poria vitrea (incl. Polyporus undatus Pers.) from the species of the genus Rigidoporus Murr. In fact, Physisporinus differs from the corky, perennial species of Rigidoporus s.str., e.g. Rigidoporus nigrescens (Bres.) Donk and R. ulmarius (Sow.: Fr.) Imazeki, in being soft and annual.

The species of Oxyporus Donk are either annual or perennial, corky and simple-septate, having spores that are broadly ellipsoid to subglobose. These characters so closely resemble those seen in Rigidoporus s.str. that it is not surprising that these two genera are considered congeneric by some authors (Pouzar 1966, Kotlaba 1984).

Though P. rivulosus is the only Physisporinus species with clamp connections, I agree with Ryvarden’s (1984) inclusion of Polyporus rivulosus Berk. & Curt. (Poria rivulosa (Berk. & Curt.) Cooke) in Physisporinus.

Acknowledgements. I want to thank my teacher Tuomo Niemelä (Helsinki) for many advise and discussions as well as Mme Alix David (Lyon). My thanks are also due to the curators of herbaria cited which have kindly sent me characters so closely resemble those seen in P. rivulosus (Berk. et Curt.) comb. nov., espèce nouvelle pour l’Europe. — Bull. Soc. Mycol. France 87: 415—419.


References


